If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2-23x=0
a = 45; b = -23; c = 0;
Δ = b2-4ac
Δ = -232-4·45·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-23}{2*45}=\frac{0}{90} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+23}{2*45}=\frac{46}{90} =23/45 $
| 41x^2-32x=0 | | f(X)=22+X-1/3 | | 8+5y=7-2y | | 22=13+y/5 | | 2(x+1)-3(x-2)=x*6 | | -2x+42=-3/5x+126/5 | | 8x-32=5x-5 | | x=1.8*(x-32) | | 2x-7-5x=12x-6-14x | | 6x+7=-18 | | -10x+14=10x-16 | | 2t+1=3(t+7) | | -10=4w^2-w | | X/6+5=11/3-x | | 16^-x=6 | | 7^x=41 | | -5x+4x(-8x-9)=0 | | (7a-6)(a+7)=0 | | 24=-3(5x+17) | | 8n+(4n+8)=37 | | 12n^2-24n=96 | | (n+6)(n7+6)=0 | | (N-8)(5n+6)=0 | | (p+7)(p+3)=-3 | | 12n^2-24n=36 | | (2x+1/3)(2x-1/3)=0 | | (N+7)(n+1)=0 | | 12^5x=2 | | 12n^2-24n+100=3 | | (4x+7)(x-7)=0 | | 12n^2-24n=-12 | | 13-3(x2)+5x=29 |